

Andromède est une galaxie située à 4.22 a.l. de la Terre.

1. Convertir 1 a.l. en mètre.

2. Donner la distance Andromède – Terre en m, km.

1. Expression de la célérité de la lumière :

on sait que v=d/t soit ici c=d/t avec $c=3.00.10^8$ m.s 1 (célérité de la lumière dans le vide)

la distance s'écrit : d = c \chi t

l'année de lumière est la distance parcourue par la lumière dans le vide en une année, transformons la durée en secondes :

$$t = 365 \times 24 \times 60 \times 60 s$$

$$1 \text{ a.l.} = c \chi t = 3.00.10^8 \chi 365 \chi 24 \chi 60 \chi 60$$

$$1 \text{ a.l.} = 9.46.10^{15} \text{ m}$$

soit encore 1 a.l. = $9.46.10^{12}$ km

2. Calcul de la distance :

ainsi $d(Terre-Andromède) = 4.22 \text{ a.l.} = 4.22 \times 9.46.10^{15}$

 $d(Terre-Andromède) = 3.99.10^{16} \text{ m soit } d = 3.99.10^{13} \text{ km}.$

Deux astres sont distants de 2.65 millions de milliards de km. Evaluer cette distance en a.l.

Transformons cette distance en mètres avec écriture scientifique :

$$d = 2.65 \times 10^6 \times 10^9 \times 10^3$$

(million =
$$10^6$$
; milliard = 10^9 et km en m: $\chi 10^3$)

$$d = 2.65.10^{18} \text{ m}$$

Conversion en a.l.

1 a.l.
$$\leftrightarrow$$
 9.46.10¹⁵ m

$$d \leftrightarrow 2.65.10^{18} \,\mathrm{m}$$

$$d = (2.65.10^{18} \times 1) / (9.46.10^{15})$$

$$d = 280 \text{ a.l.}$$
 ou mieux $d = 2.80.10^2 \text{ a.l.}$