Bac S 2013 Amérique du nord

CORRECTION

© http://labolycee.org

EXERCICE I: ASPIRINE ET PRÉVENTION CARDIOVASCULAIRE (8,5 points)

1.1. Obtention de l'aspirine :

1.1.1. (0,25 pt) Quantité de matière d'anhydride éthanoïque introduite :

On a introduit un volume V = 14,0 mL d'anhydride éthanoïque.

$$\mu = \frac{m}{V} \qquad \text{soit m} = \mu.V$$

$$n = \frac{m}{M} \text{ donc n} = \frac{\mu.V}{M} \qquad \text{(avec } \mu \text{ convertie en g.L}^{-1} \text{ et V en L)}$$

$$n = \frac{1,082 \times 10^3 \times 14,0 \times 10^{-3}}{100} = \textbf{0,149 mol d'anhydride \'ethano\"ique}$$

(0,25 pt) Quantité de matière d'acide salicylique introduite :

On a introduit une masse m' = 10,0 g d'acide salicylique.

$$n' = \frac{m'}{M'}$$

$$n' = \frac{10,0}{138} = \textbf{7,25} \times \textbf{10}^{-2} \text{ mol } \text{d'acide salicylique}$$

(0,25 pt) Réactif limitant : 2 méthodes au choix

Méthode 1 : à privilégier quand les coefficients stœchiométriques sont égaux à 1

n' < n et comme une mole d'anhydride éthanoïque réagit avec une mole d'acide salicylique, le réactif limitant est alors l'acide salicylique. **L'anhydride éthanoïque est introduit en excès**.

Méthode 2 : On peut aussi utiliser un tableau d'avancement.

équation chimique		acide salicylique	+ anhydride → éthanoïque	aspirine	+	
État du système	Avancement (mol)	Quantités de matière (mol)				
État initial	x = 0	n'	n	0		
En cours de transformation	х	n' – x	n – x	X		
État final	$X = X_{max}$	n' - x _{max}	n – x _{max}	Xmax		

Si l'acide salicylique est limitant, alors $n' - x_{max} = 0$, donc $n' = x_{max}$.

Si l'anhydride éthanoïque est limitant alors $n - x_{max} = 0$ donc $n = x_{max}$.

Le réactif limitant est celui qui conduit à la valeur de l'avancement maximal la plus faible ; n' < n donc il s'agit de l'acide salicylique et l'anhydride éthanoïque est en excès.

1.1.2. (0,25 pt) D'après l'équation de la réaction, une mole d'acide salicylique fournit une mole d'aspirine, or on dispose de n' mole d'acide salicylique, il se formera n' mole d'aspirine.

(0,25 pt) m(aspirine) = n'.M(aspirine)

 $m(aspirine) = 7,25 \times 10^{-2} \times 180 = 13,0 g$

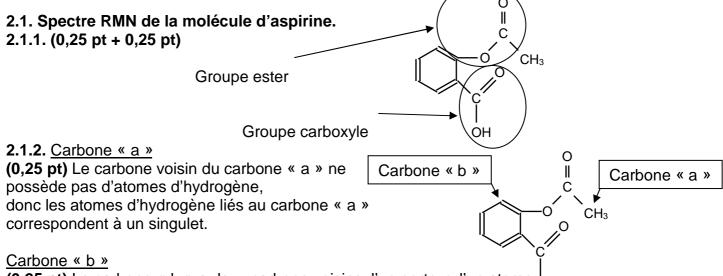
Autre méthode : d'après le tableau d'avancement $n(aspirine) = x_{max} = n'$

1.2 Suivi par chromatographie :

1.2.1. (0,75 pt) Sur une **plaque pour CCM** on va déposer différents prélèvements afin de s'assurer de la formation de l'aspirine.

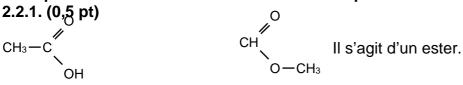
On trace sur la plaque, orientée en portrait, un trait à 1 cm du bord inférieur afin d'y effectuer les dépôts.

On dépose deux témoins à l'aide d'un capillaire : l'acide salicylique pur et l'aspirine du commerce.

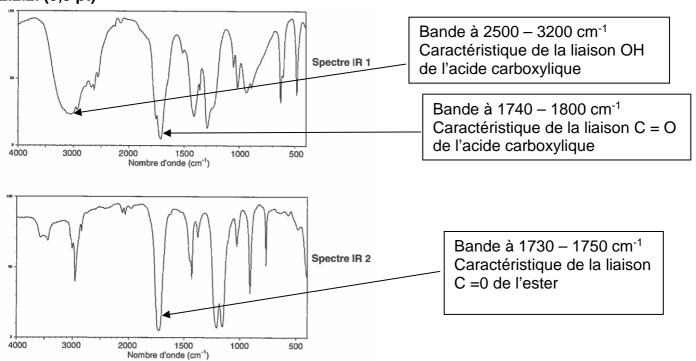

On effectue ensuite les cinq dépôts correspondants aux prélèvements effectués dans le mélange réactionnel.

On dépose la plaque pour CCM dans la **cuve à chromatographie** avec **l'éluant**. On attend que le front du solvant monte suffisamment.

On révèle ensuite sous **UV** ou dans le permanganate de potassium.


1.2.2. (0,5 pt) Si le système réactionnel est dans son état final, tout l'acide salicylique doit être consommé. Sur le chromatogramme, il n'y aura plus de tâche correspondant à celle de l'acide salicylique, par contre on aura formé de l'aspirine. On doit obtenir une tache à la même hauteur que celle obtenue avec l'aspirine du commerce.

(0,25 pt) Le carbone « b » a deux carbone voisins, l'un porteur d'un atome OH d'hydrogène, l'autre n'en portant pas donc l'hydrogène du carbone « b » correspond à un doublet.


2.2. Spectre IR de la molécule d'acide éthanoïque.

Acide éthanoïque

méthanoate de méthyle

2.2.2. (0,5 pt)

Le spectre IR1 correspond à celui de l'acide éthanoïque et le spectre IR2 à celui du méthanoate de méthyle.

3. Dosage d'un sachet d'aspirine

3.1. (0,25 pt) $HA_{(aq)} + HO_{(aq)} \rightarrow A_{(aq)} + H_2O_{(h)}$

3.2. (0,5 pt) À l'équivalence d'un titrage, les réactifs sont introduits dans les proportions stœchiométriques : $n(HA)_{présente} = n(HO^-)_{versée}$

(0,25 pt) n(HA)_{présente} = $c_B.V_E$ dans dans $V_A = 100,0$ mL de solution

Soit n(HA) la quantité d'aspirine présente dans le sachet donc dans 500 mL de solution, **(0,25 pt)** on a n(HA) = 5. $n(HA)_{présente}$

 $m_{exp} = n(HA).M_{aspirine}$

 $m_{exp} = 5$. $c_B.V_E.M_{aspirine}$

(0,25 pt) $m_{exp} = 5 \times 1,00 \times 10^{-2} \times 10,7 \times 10^{-3} \times 180 = 9,63 \times 10^{-2} g = 96,3 mg$

3.3.
$$\left(\frac{\Delta m_{exp}}{m_{exp}}\right)^2 = \left(\frac{\Delta V_E}{V_E}\right)^2 + \left(\frac{\Delta c_B}{c_B}\right)^2$$

$$\frac{\Delta m_{exp}}{m_{exp}} = \sqrt{\left(\frac{\Delta V_E}{V_E}\right)^2 + \left(\frac{\Delta c_B}{c_B}\right)^2}$$

$$(0.25 \text{ pt}) \frac{\Delta m_{exp}}{m_{exp}} = \sqrt{\left(\frac{0.1}{10.7}\right)^2 + \left(\frac{0.02 \times 10^{-2}}{1.00 \times 10^{-2}}\right)^2} = 2 \times 10^{-2} = 2 \%$$

$$\Delta m_{\text{exp}} = \frac{\Delta m_{\text{exp}}}{m_{\text{exp}}} \ . m_{\text{exp}}$$

(0,25 pt) $\Delta m_{exp} = 2 \times 10^{-2} \times 9,63 \times 10^{-2} = 2 \times 10^{-3} g = 2 mg$

Encadrement : $m_{exp} - \Delta m_{exp} < m_{exp} < m_{exp} + \Delta m_{exp}$

(0,25 pt)

 $94 \text{ mg} < m_{exp} < 98 \text{ mg}$

3.4. (0,5 pt) L'encadrement obtenu ne comprend pas la valeur de 100 mg mentionnée sur le sachet d'aspirine.

L'écart observé peut être dû :

(1 explication parmi celles-ci-dessous)

- l'élève aurait dû rincer le sachet avec de l'eau distillée afin d'être certain de récupérer toute l'aspirine solide ;
 - à la non dissolution totale de l'aspirine dans la solution ;
 - à une mauvaise lecture du volume de 500,0 mL sur la fiole jaugée ;
- à une mauvaise détermination du volume équivalent V_E (changement de coloration difficile à repérer, mauvaise lecture sur la burette) :
 - erreur dans le prélèvement du volume V_A à doser.

4. Autre forme de l'aspirine, moins agressive pour l'estomac

4.1. (0,25 pt) Établissons le diagramme de prédominance de l'aspirine :

(0,25 pt) Dans l'estomac, à pH = 2, l'aspirine prédomine.

HC HC CH

4.2.2. (0,25 pt) La catalgine est soluble dans l'eau car elle ne contient pas d'acide acétylsalicylique (aspirine) mais des ions acétylsalicylate.

4.2.3. (0,25 pt)
$$A^{-}_{(aq)} + H_3O^{+}_{(aq)} \rightarrow HA_{(s)} + H_2O_{(l)}$$

Ion acétylsalicylate

Aspirine